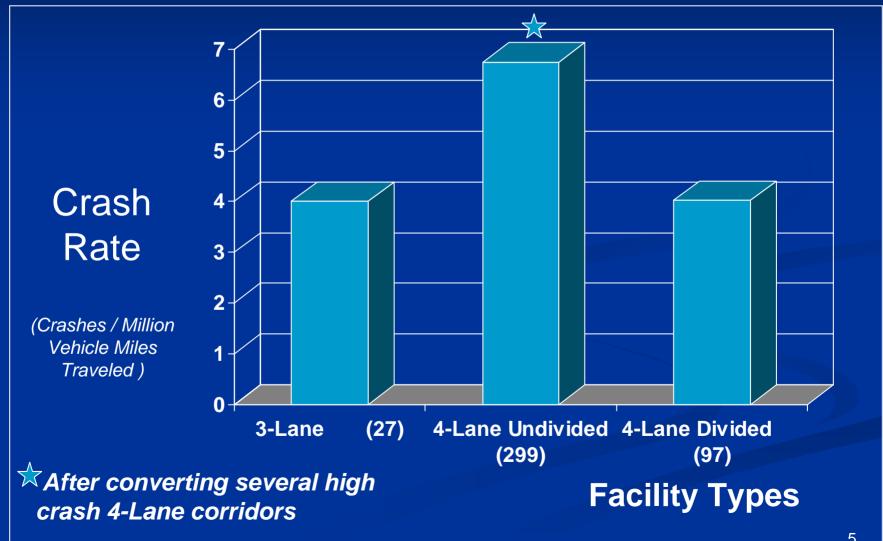
4-Lane to 3-Lane Conversions

Tom Welch, P.E.
State Traffic Safety Engineer
Office of Traffic and Safety
Iowa Department of Transportation
tom.welch@dot.iowa.gov

The Iowa 4 Lane to 3 Lane Experience

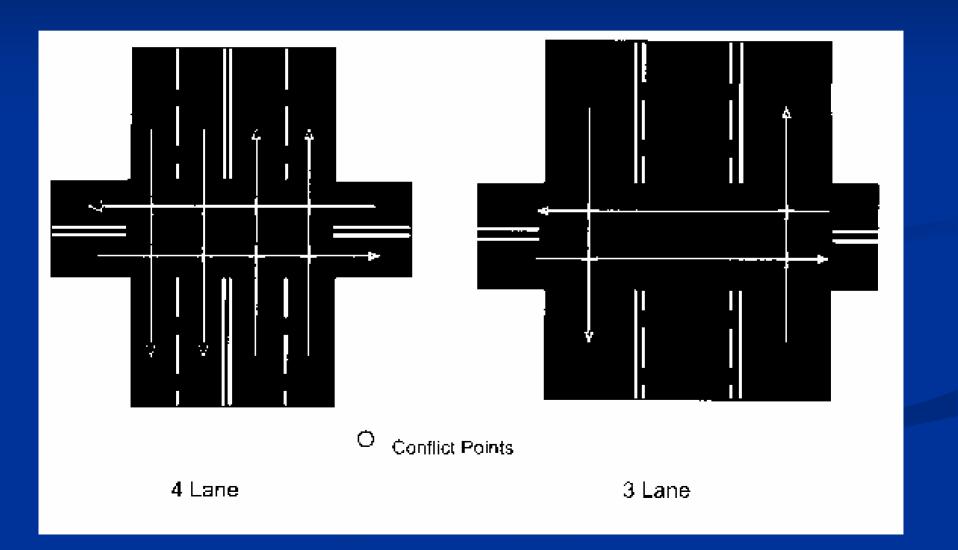
Optimization of Pavement to Improve Safety and Enhance Quality of Life

Traditional Improvement to 2-Lane Urban Street

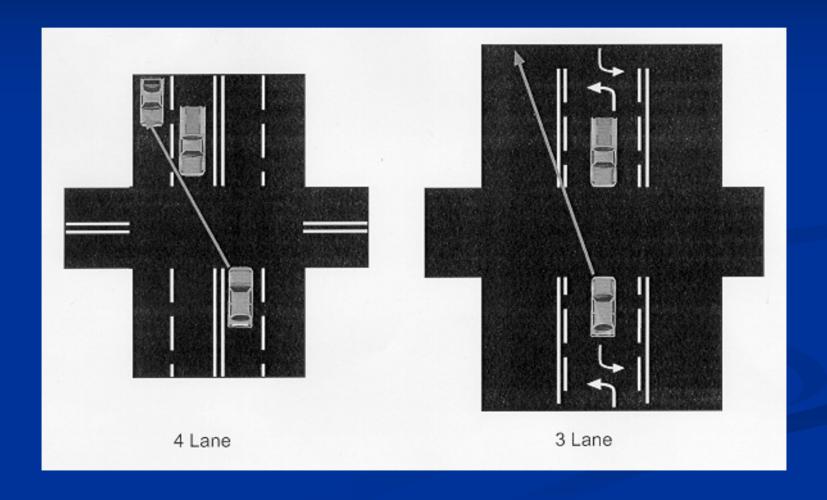


4-Lane Undivided Roadway

US-61 Ft. Madison, Iowa Two-Lane to Four-Lane Widening

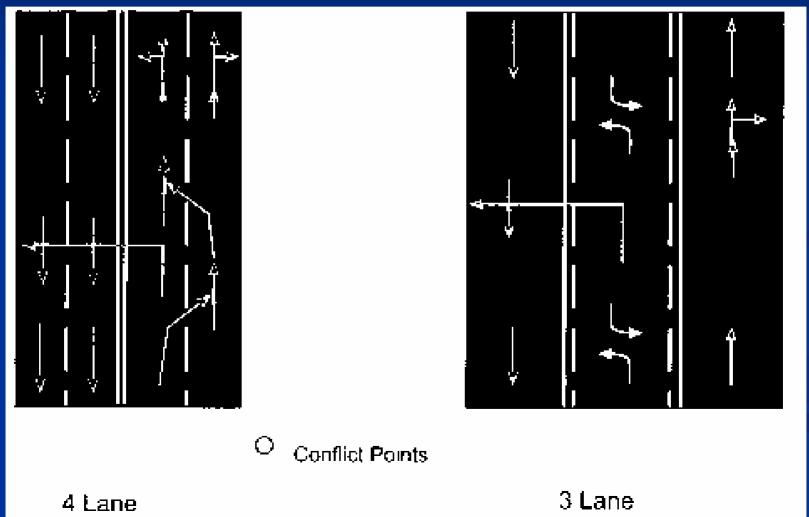

Corridor Element	Change			
+ Traffic volume	Increased 4 percent			
+ Corridor travel delay	Increased 4 percent			
+ Mid-block 85 th %tile speed	Increased 2.5 percent			
+ Traffic traveling more than 5 mph over the posted speed limit	Increased from 0.5 percent to 4.2 percent			
+ Crash rate	Increased 14 percent			
+ Injury rate	Increased 88 percent			
+ Total value loss	Increased 280 percent			

Urban Minnesota DOT Crash Rates



Cross-Traffic Conflict Points

Intersection Site Distance



Four-Lane Undivided Roadway/Intersection Operating as "Defacto" Three-Lane Cross Section

Mid-Block Conflict Points


Pedestrian Crossing 4 Lane Undivided Roadway

Pedestrian Crossing 3 Lane Undivided

Responding to Older Driver / Pedestrian Concerns in Sioux Center, Iowa **July 1999**

Sioux

Center

6,0002

US-75 Sioux Center Before

Iowa's First Case Study US-75 Sioux Center

1998 ADT	8 -14,000 VPD
Percent Trucks	9%
Land Use	Residential / CBD w/parking
Traffic Signals	Three
Speed Limit	25 MPH

Before Concerns:

- Excessive speeding
- Difficulty entering and crossing US-75
- Fatal and major injury older person pedestrian crashes

Sioux Center After

Before / After Analysis US-75 Sioux Center

	Before	After (2)	Difference
Peak Hour Travel Time	50 sec	68 sec	+ 36 %
Average Travel Speed ¹	28 mph	21 mph	- 25%
Average Free Flow Speed ¹	35 mph	32 mph	- 10%
Vehicles Traveling more than 5mph above speed limit ¹	43 %	13 %	- 70 %
Crashes	30	13	- 57 %
Personal Injury Crashes	10	0	- 100 %

Before / After Public Opinion Survey⁽¹⁾ US-75 Sioux Center

	Before	After
Support Conversion	18 %	45%
Neutral	37 %	15%
Oppose Conversion	45 %	40%

^{(1) 930} Responses- City Population 6,002

Ardith Lein, Executive Director Sioux Center Chamber of Commerce

Mrs. Lein stated that:

The Chamber of Commerce Executive Board, as well as almost all business owners, prefer the three-lane highway to the previous four-lane highway.

Ardith Lein, Executive Director, SCCC (cont.)

- It has slowed traffic down through the central business district, which has improved the shopping environment.
- Pedestrian crossing of US-75 are much safer; there have been fewer accidents and the emergency vehicles like having the center lane available to drive in.
- "Safety has to be the priority over a little extra delay."

Harold Schiebout, City Manager

But we can not have it both ways so we have to decide which is best overall."

"Currently, the city council supports keeping the conversion permanent."

Resident, Rod DeKruyf

Rod DeKruyt, had called Mr. Schiebout and stated:

- □ 'I thought all of you were plumb nuts when you proposed changing US 75 from 4 lanes to 3 lanes.
- 'But now I take my hat off to you for being persistent."
- "It is not perfect, but it is much better."

Paul Adkins, Chief of Police

Chief Adkins admitted he was opposed to the four lane to three lane conversion when it was proposed.

He said it was initially confusing for many elderly drivers, but now he is the biggest advocate.

He suggested that any city that is considering a conversion to call him at

(---) ----

Blue Grass - US 61 (9,000 ADT)

- Speeds regulated much better
- Accidents have decreased significantly
- Reduction in capacity is not an issue.

Sanford Remly, Public Works Director

Osceola - US 34 (11,000ADT)

- "I was skeptical but have since changed my mind."
- Initial reactions are positive
- Capacity has not been adversely affected
- Overall a success
 Brad Wright, City Administrator

IOWA 4-LANE TO 3-LANE CONVERSION STUDY SUMMARY OF STUDY RESULTS BEFORE AND AFTER CONVERSION

		ANNUAL AVERAGE CRASHES			CRASH RATE (PER MVM)		
CITY	AADT(range)	BEFORE	AFTER	%CHANGE	BEFORE	AFTER	%CHANGE
Storm Lake	5100 - 9100	64	34	-47	13.40	8.18	-39
Clear Lake	11900 - 12000	34			5.42		
Mason City	7100	9	4	-56	1.67	0.87	-48
Osceola	6100 - 9900	47	22	-53	7.70	3.50	-55
Manchester	11200	15	11	-27	12.26	7.60	-38
Iowa Falls	9400 - 11700	21	8	-62	4.82		
Rock Rapids	3910 - 5100	6	2	-67	10.23	3.31	-68
Glenwood	2950 - 7100	30	15	-50	12.60	6.28	-50

"Before" cases based on 5 years of data (except Storm Lake); "after" cases based on 1 to 5 years of data. Year of conversion is not included in the data analysis. Storm Lake "before" data 1991 and 1992 only; conversion in 1993. Clear Lake conversion completed in 2003, after data not available. AADT reported for year of conversion where available. Storm Lake AADT not available for 1993; value shown represents first available year (1996). Council Bluffs AADT not available for 2000; value shown represents 1996.

IOWA 4-LANE TO 3-LANE CONVERSION STUDY SUMMARY OF STUDY RESULTS BEFORE AND AFTER CONVERSION

	1						
		ANNUAL AVERAGE CRASHES			CRASH RATE (PER MVM)		
CITY	AADT(range)	BEFORE	AFTER	%CHANGE	BEFORE	AFTER	%CHANGE
Des Moines	12300 - 17400	67	39	-42	11.13	6.57	-41
Council Bluffs	9600	8	2	-75	10.36	2.70	-74
Blue Grass	9400 - 10000	12	3	-75	6.23	2.86	-54
Sioux Center	7200 - 10500	65	23	-65	11.13	4.45	-60
Indianola	7500 - 12800	29	24	-17	4.85	3.18	-34
Lawton	8400 - 9800	6	2	-67	2.97	0.80	-73
Sioux City	9300 - 11100	5	3	-40	1.94	1.34	-31

"Before" cases based on 5 years of data (except Storm Lake); "after" cases based on 1 to 5 years of data. Year of conversion is not included in the data analysis. Storm Lake "before" data 1991 and 1992 only; conversion in 1993. Clear Lake conversion completed in 2003, after data not available. AADT reported for year of conversion where available. Storm Lake AADT not available for 1993; value shown represents first available year (1996). Council Bluffs AADT not available for 2000; value shown represents 1996.

Model

1st Level

$$y_{it} \sim Poi\left(\frac{\lambda_{it}v_{it}}{1000}\right)$$

2nd Level

$$\log(\lambda_{it}) = \beta_1 + \beta_2 X_{1it} + \beta_3 t + \beta_4 (t - t_{0i}) I_{(t > t_{0i})} + \beta_5 X_{1t} t + \beta_6 X_{1t} (t - t_{0i}) I_{(t > t_{0i})}$$

$$+ \beta_7 X_{2it} + \beta_8 X_{3it} + \beta_9 X_{4it} + i d_i$$

where:

$$id_i \sim N(0, (\tau_{bw}^2)^{-1})$$
, $I_{(t>t_{0i})} = \begin{cases} 1, & \text{if } t > t_{0i} \\ 0, & \text{if } t \le t_{0i} \end{cases}$, and

Priors:

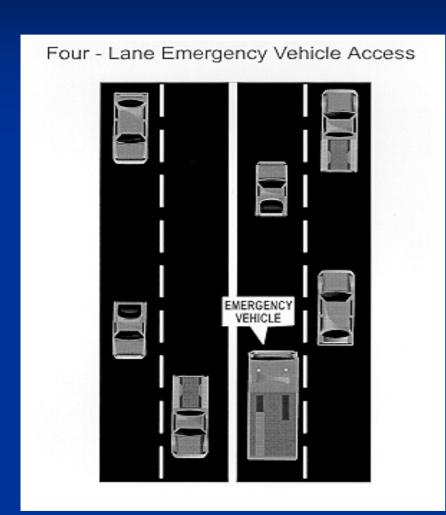
 $\beta_j \sim N(0,1000)$, for *j* from 1 to 9

T²_{bw} is the between-site precision

and
$$\tau_{bw}^2 \sim gamma(0.01, 0.01)$$

Results/Discussion

* 25.2% (23.2% - 27.8%) in crashes/mile


★ 18.8% (17.9% - 20.0%)

 in crash rate

Potential Benefits

- Improved Vehicle Safety
- Improved Pedestrian Safety
- Traffic Calming
- Improved Emergency Response Time
- Potential Bike Accommodation

Emergency Vehicle Access

Three-Lane Cross Section with Bike Lanes

Potential Disadvantages

1. Increased delay at un-signalized access points.

- 2. Loss of passing opportunities
 - Aggressive Drivers
 - Slow Moving Vehicles

3. Increased Travel Delay

Supplementary Right Turn Lanes

Access Control Considerations

Eliminate, consolidate and relocate driveways

Cautions

- ADT greater than 15,000ADT
- At grade rail crossings
- School bus stops
- Curbside mailboxes
- 90 degree turns along corridor
- High volume of slow-moving agricultural vehicles
- Offset side streets or major access points
- High volume turning trucks

Which is the Priority?

 Improving traffic and pedestrian safety while maintaining acceptable traffic flow

Or

 Moving traffic with a minimum amount of delay and accepting higher safety risks

5555

4-Lane to 3-Lane Conversions

Troy A. Jerman, P.E.
Senior Transportation Engineer
Office of Traffic and Safety
Highway Division
Iowa Department of Transportation
800 Lincoln Way
Ames, Iowa 50010
515 239-1470
troy.jerman@dot.iowa.gov